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Abstract We show that solutions of a mass action chemical kinetics reaction–diffu-
sion system are nonnegative. Conditions for components of the solution to be strictly
positive or identically zero are given, based on an indexing procedure due to A. I. Vol-
pert [Mat. Sb. (Russian) 88, 578–588 (1972); Math. USSR Sb. (English) 17, 571–582].
The results are illustrated with some examples.
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1 Introduction

Thenonnegativityandstrictpositivenessof the solutionofamassactionchemicalkinet-
ics system in the case of an ordinary differential equations system is studied in [1], Chap.
12. The solution represents the concentrations of the chemical substances involved in a
chemical reaction. It is shown that a solution of a mass action kinetics system is positive
if the initial condition is positive and nonnegative if the initial condition is nonnegative.
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If someof the initialvaluesarezero, thenan indexingprocedurecanbeused todetermine
which components are positive for positive time and which, if any, are identically zero.
We extend these results to a reaction-diffusion system with different diffusion coeffi-
cients, that has nonnegative initial condition and zero-flux boundary condition. The the-
orem which shows nonnegativity of the solution, Theorem 3 (see Appendix), is more
general and applies to other models from biology, ecology, etc.

A chemical mechanism of n chemical substances Ak , k = 1, . . . , n and m elemen-
tary reactions with rate constants ki , i = 1, . . . , m is

n∑

k=1

αik Ak
ki−→

n∑

k=1

βik Ak, i = 1, . . . , m. (1)

The constants αik , βik are nonnegative numbers, called stoichiometric coefficients that
are integers in a fully detailed mechanism.

Let the concentrations of Ak be denoted by uk , k = 1, . . . , n. If the law of mass
action is employed then the rate of the i-th reaction is

wi (u) = ki u
αi1
1 . . . uαin

n , i = 1, . . . , m. (2)

We assume that u0
k = 1 for uk ≥ 0. Let γik = βik − αik , for i = 1, . . . , m,

k = 1, . . . , n. Then a solution of the initial value problem

duk

dt
=

m∑

i=1

γikwi (u), k = 1, . . . , n (3)

uk(0) = u0
k ≥ 0 (4)

gives the time evolution of the concentrations uk , k = 1, . . . , n.
We will denote by u a vector in R

n , i.e., u = (u1, . . . , un). If uk ≥ 0 for k =
1, . . . , n, we write u ≥ 0. Similarly, if uk > 0 for all k then u > 0.

If the concentrations uk , k = 1, . . . , n are spatially nonhomogeneous functions,
the corresponding reaction-diffusion system with nonnegative initial condition and
zero-flux boundary condition is

∂uk

∂t
= dk�uk +

m∑

i=1

γikwi , (x, t) ∈ � × (0, T ] (5)

uk(x, 0) = u0
k(x) , x ∈ � (6)

∂uk

∂ν
(x, t) = 0, x ∈ ∂�, 0 < t ≤ T . (7)

All diffusion coefficients dk are assumed to be positive. The set � is a bounded open
and connected subset of R

s with a C2 smooth boundary ∂�. Since the concentra-
tions uk are nonnegative functions we take an initial condition uk(x, 0) ≥ 0 for all
k = 1, . . . , n and x ∈ �. Most chemical reactions take place in vessels without inflow
or outflow of material through the side boundary, justifying the zero-flux boundary
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condition. The vector ν is the unit outer normal to ∂�. Under some additional smooth-
ness assumptions on the initial condition u(x, 0) and the boundary ∂�, standard the-
orems [2,3] guarantee the existence and uniqueness of a classical solution to (5)–(7)
for some T > 0, i.e., u(x, t) belongs to C2(� × (0, T ]), C1(�̄ × (0, T ]) and C(�̄ ×
[0, T ]) spaces.

The question to be considered here is about the solution being nonnegative and
under what conditions it is positive. In [4] A. Volpert determines, using the indexing
procedure explained below, which components of the solution to the ODE system
(3) are positive for all t > 0, even when some of the respective initial conditions
(4) are zero. We use the same indexing procedure in Theorem 1 to determine which
components of the solution u(x, t) to the reaction-diffusion system (5) are positive
for all t > 0. We note that a maximum principle argument applies directly if each of
the initial functions uk(x, 0) is positive at some x ∈ �. However, this is not the case
with the model of (1), since the initial concentrations of some substances will be taken
identically zero. In Theorem 2 it is shown which concentrations uk(x, t) will remain
zeroes if they are zeroes initially.

1.1 Indexing procedure

It is common to assume that the intermediate and product substances in (1) are not
present initially, meaning that uk(x, t) ≡ 0 for some indices k [5]. Next we explain
the indexing procedure of A. I. Volpert, [1, p. 615], that determines all substances Ak

in (1) whose concentrations stay positive for t > 0.
Let A0 be a given set of chemical substances Ak , such that their corresponding

initial concentrations uk(x, 0) are nonnegative and not identically zero. We consider
that if Ak /∈ A0 then uk(x, 0) ≡ 0. We assign an index 0 to all substances from A0. An
index 0 is assigned also to all reactions, such that all of their reactants, i.e., chemical
substances to the left of → in (1) have an index 0. Further indexing is carried out
by induction. Suppose we have assigned indices less than κ to chemical substances
and reactions. Then the index κ is assigned to all product substances, i.e., chemical
substances to the right of → in (1), not having an index for which the reaction has an
index κ − 1. The index κ is assigned also to all reactions not having an index and for
which all reactant substances have indices at most κ . Depending on the choice of A0,
not all substances will receive an index. Those that do are called reachable from A0.
Those that do not are called nonreachable from A0 and receive an index of +∞. In
Theorems 1 and 2, we show that reachable substances will have positive concentration
for positive time and nonreachable substances will have identically zero concentration
for all time, respectively. We demonstrate the indexing procedure with the following
example, which is a model of cool flame reaction, [6, p. 299].

Example 1 The scheme of the reaction is as follows:

A1 + A2
k1−→ A3

A3 + A4
k2−→ A2 + A5

2A5
k3−→ A3.
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Let the set of initial substances be A0 = {A1, A2, A4}, which implies that u1(x, 0),
u2(x, 0), u4(x, 0) are nonnegative and not identically zero. The indexing procedure
gives:

0.
0

A1 + 0
A2

k1−→ 1
A3

1.
1

A3 + 0
A4

k2−→ 0
A2 + 2

A5

2. 2
2

A5
k3−→ 1

A3.

The numbers on the left are the indices of the reactions and the numbers over the Ak’s
are the indices of the chemical substances. If instead A0 = {A2, A4} then A1, A3 and
A5 will be nonreachable and will receive an index of +∞.

2 Results

We start by showing that nonnegative initial conditions in (6) imply nonnegative solu-
tions of (5)–(7). The following proposition follows from Theorem 3 in the Appendix.

Proposition 1 Suppose that in (5)–(7) the initial condition is u(x, 0) ≥ 0. Then the
solution u(x, t) ≥ 0 for all (x, t) ∈ �̄ × [0, T ].

Proof We consider the reaction term fk = ∑m
i=1 γikwi in the k-th equation of the

system (5). We have to show that fk is of the type studied in Theorem 3. If γik =
βik − αik < 0 or 0 ≤ βik < αik it follows that αik > 0. This means that Ak partic-
ipates as a reactant on the left side of the i-th reaction in (1). Therefore if γik < 0
the corresponding rate function wi contains a factor of uk . Hence we can rewrite the
reaction term of the k-th equation as follows

m∑

i=1

γikwi =
∑

γik<0

γikwi +
∑

γik≥0

γikwi = akuk + bk, (8)

where akuk is the sum of all γikwi such that γik < 0 and bk is the sum of all those
γikwi such that γik ≥ 0. Now bk ≥ 0 and ak ≤ 0 if u ≥ 0. Therefore if u ≥ 0 and
uk = 0 it follows that fk(u) = akuk + bk ≥ 0.

By Theorem 3, where we take α(x, t) = g(x, t) ≡ 0 in the boundary condition
(13) it follows that u(x, t) ≥ 0 for all (x, t) ∈ �̄ × [0, T ]. ��

The following proposition is similar to Theorem 1.4, [7, p. 29]. Here we show
that if some initial condition uk(x, 0) is positive for some x ∈ � then the component
uk(x, t) > 0 for all x ∈ �̄ and t > 0.

Proposition 2 Let u(x, t) be a solution of (5)–(7), such that u(x, 0) ≥ 0 and some
uk(x, 0) is not identically zero for x ∈ �. Then uk(x, t) > 0 for all (x, t) ∈ �̄×(0, T ].
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Proof By Proposition 1 it follows that u(x, t) ≥ 0 for all (x, t) ∈ �̄ × [0, T ].
We consider the k-th equation from (5)

∂uk

∂t
− dk�uk = akuk + bk, (9)

where ak(u) ≤ 0 and bk(u) ≥ 0 for u ≥ 0 from (8). Now assume that uk(x0, t0) = 0
for some x0 ∈ � and t0 ∈ (0, T ]. It follows that uk(x, t) = 0 for all x ∈ �̄, t ≤ t0
by a strong minimum principle [8]. Thus uk(x, 0) ≡ 0, which contradicts uk(x, 0) not
identically zero. Using uk(x, t) > 0 for (x, t) ∈ � × (0, T ], assume that for some
(x0, t0) ∈ ∂� × (0, T ], uk(x0, t0) = 0. It follows that ∂uk

∂ν
< 0 at (x0, t0) by a strong

minimum principle [8]. This is a contradiction with the zero-flux boundary condition.
Thus uk(x, t) > 0 for (x, t) ∈ �̄ × (0, T ]. ��

Using the indexing procedure we can obtain an even stronger result for the system
(5). We will show in the next theorem that if every Ak in (1) receives a finite index
then u(x, t) > 0 for all (x, t) ∈ �̄ × (0, T ].
Theorem 1 Let u(x, t) be a solution of (5)–(7) in �̄×[0, T ]. Assume that uk(x, 0) ≥ 0
is not identically zero for all corresponding Ak ∈ A0 and that if Ak /∈ A0 then
uk(x, 0) ≡ 0. Then uk(x, t) > 0 in �̄ × (0, T ] for all Ak that are reachable from A0.

Proof Let Ak belong to A0, i.e., its index κ from the indexing procedure is zero.
By Proposition 2, if uk(x, 0) ≥ 0 is not identically zero then uk(x, t) > 0 in �̄×(0, T ].
Thus uk(x, t) > 0 in �̄ × (0, T ] for all Ak ∈ A0.

Further we proceed by induction on the index κ . Suppose it has been proved that
uk(x, t) > 0 in �̄ × (0, T ] for all indices strictly less than κ . We consider the con-
centration uk of the substance Ak with an index κ . For κ > 0, Ak is a product of
some reaction with an index less or equal to (κ − 1). Assume that this is the i-th
reaction from (1). Since all of its reactants have indices from the indexing procedure
less than κ it follows by the induction assumption that their respective concentrations
are positive. Therefore at least one rate function wi from the sum bk in (8) is positive
and bk(x, t) = ∑

γik>0 γikwi > 0 for (x, t) ∈ � × (0, T ]. Now consider (9) with
bk > 0 in � × (0, T ]

∂uk

∂t
− dk�uk − akuk > 0. (10)

Suppose that uk(x0, t0) = 0 for some (x0, t0) ∈ �× (0, T ]. By ∂uk
∂v

≤ and �uk ≥ 0 at
the point of local minimum (x0, t0) ∈ �×(0, T ] and dk > 0 we obtain a contradiction
with (10).

Now suppose that the point (x0, t0) ∈ ∂�×(0, T ] is such that uk(x0, t0) = 0. Using
uk(x, t) > 0 in (x, t) ∈ � × (0, T ], by a strong minimum principle [8] it follows that
then ∂uk

∂ν
< 0 at (x0, t0). This contradicts the zero-flux boundary condition.

Therefore uk(x, t) > 0 for all (x, t) ∈ �̄ × (0, T ], where the corresponding Ak

has an index κ . Thus uk(x, t) > 0 for all (x, t) ∈ �̄ × (0, T ] and for all Ak that are
reachable from A0. ��
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Example 1 (continued) By the law of mass action the rate functions are w1 = k1u1u2,
w2 = k2u3u4 and w3 = k3u2

5. Therefore the reaction-diffusion system is:

∂u1

∂t
= d1�u1 − k1u1u2

∂u2

∂t
= d2�u2 − k1u1u2 + k2u3u4

∂u3

∂t
= d3�u3 + k1u1u2 − k2u3u4 + +k3u2

5

∂u4

∂t
= d4�u4 − k2u3u4

∂u5

∂t
= d5�u5 + k2u3u4 − 2k3u2

5.

We assume zero-flux boundary condition. Let the initial condition be u(x, 0) ≥ 0 and
uk(x, 0) not identically zero for k = 1, 2, 4 with u3(x, 0) = u5(x, 0) = 0 for all X.
By Theorem 1 it follows that u(x, t) > 0, for (x, t) ∈ �̄ × (0, T ].

If at least one of the substances A1, A2 or A3 is not present then the reaction from
Example 1 can not proceed. For example if u1(x, 0) ≡ 0 then A1, A3 and A5 are
nonreachable from A0 = {A2, A4} and their concentrations should remain zeroes.
This leads us to the proof of the following theorem.

Theorem 2 Let u(x, t) be a solution of (5)–(7) in �̄ × [0, T ]. Then uk(x, t) ≡ 0 in
�̄ × [0, T ] for all Ak that are nonreachable from A0.

Proof The first part of the proof is the same as in [1, p. 617]. We include it here for
the convenience of the reader. Let N be the set of all indices of substances Ak non-
reachable from A0. Next we show that in all of the differential equations for uk with
k ∈ N from the system (5), each rate function wi in the k-th equation has the form
wi = φi ul for some l ∈ N , where φi = φi (x, t), (see Example 1). Let k ∈ N then if
αik > 0 for some i , Ak is a reactant in the i-th reaction and wi = φi uk for l = k. If
on the other hand βik > 0, αik = 0, then in the i-th reaction at least one reactant Al

is nonreachable (otherwise Ak is reachable), so that wi = φi ul for some l 	= k ∈ N ,
with φi ≥ 0.

Now we consider the subsystem of equations from (5) with indices k ∈ N and
corresponding zero initial conditions and zero-flux boundary conditions. From the
discussion in the previous paragraph it follows that the reaction term fk for k ∈ N
can be written as [ fk = ∑m

i=1 γikwi = hkkuk + ∑
l 	=k hklul ], where hkl ≥ 0 for

l 	= k. Therefore the uniqueness theorem for weakly-coupled parabolic systems [10,
p. 191] applies to the subsystem with equation indices k ∈ N of (5). The zero vector
is a solution of this subsystem with zero initial and zero-flux boundary conditions. By
uniqueness it follows that the zero is the only solution. ��
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3 Examples

Example 2 Consider the chemical reaction, called an elementary step:

A1 + A2
k−→ A3.

The corresponding reaction-diffusion system is

∂u1

∂t
= d1�u1 − ku1u2

∂u2

∂t
= d2�u2 − ku1u2

∂u3

∂t
= d3�u3 + ku1u2

with an initial condition u(x, 0) ≥ 0, where x ∈ � and a boundary condition ∂u
∂ν

= 0,
where (x, t) ∈ ∂� × (0, T ].

By Proposition 1, since u(x, t) ≥ 0 for x ∈ �, it follows that u(x, t) ≥ 0 for
(x, t) ∈ �̄ × [0, T ].

If A0 = {A1, A2} the indexing procedure gives

0.
0

A1 + 0
A2

k−→ 1
A3.

Therefore u(x, t) > 0 for (x, t) ∈ �̄ × (0, T ] by Theorem 1. If A0 = {A1} or A0 =
{A2}, then by Theorem 2 it follows that u2(x, t) ≡ 0, u3(x, t) ≡ 0 or u1(x, t) ≡ 0,

u3(x, t) ≡ 0, respectively.

Example 3 The following example, representing chlorination of ethylene is from
[1, p. 616]. If the A0 = {A1, A3} the reaction with the indexing is

0.
0

A1
k1−→ 2

1
A2

1. 2
1

A2
k2−→ 0

A1

1.
1

A2 + 0
A3

k3−→ 2
A4

2.
2

A4 + 0
A1

k4−→ 3
A5 + 1

A2

2.
2

A4 + 1
A2

k5−→ 3
A5

2. 2
2

A4
k6−→ 3

A6.

The reaction-diffusion system takes the form
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SYSTEM HERE,

with nonnegative initial condition u(x, 0) ≥ 0, x ∈ � and zero flux boundary condi-
tion ∂u

∂ν
= 0, (x, t) ∈ ∂� × (0, T ] takes the form:

∂u1

∂t
= d1�u1 − k1u1 + k2u2

2 − k4u1u4

∂u2

∂t
= d2�u2 + 2k1u1 − 2k2u2

2 − k3u2u3 + k4u1u4 − k5u2u4

∂u3

∂t
= d3�u3 − k3u2u3

∂u4

∂t
= d4�u4 + k3u2u3 − k4u1u4 − k5u2u4 − 2k6u2

4

∂u5

∂t
= d5�u5 + k4u1u4 + k5u2u4

∂u6

∂t
= d6�u6 + k6u2

4.

By Proposition 1, u(x, 0) ≥ 0 for x ∈ � implies that u(x, t) ≥ 0 in �̄ × [0, T ].
If we assume that u1(x, 0) ≥ 0 and u3(x, 0) ≥ 0 are not identically zero and all
other uk(x, 0) ≡ 0, k = 2, 4, 5, 6 then by Theorem 1 it follows that u(x, t) > 0 in
�̄ × (0, T ]. If A0 = {A3} then only A3 is reachable and uk(x, t) ≡ 0 for k 	= 3 by
Theorem 2. If A0 = {A1} then only A1 and A2 are reachable and uk(x, t) ≡ 0 for
k = 3, 4, 5, 6 by Theorem 2.

Appendix

Now we study the conditions for nonnegative solutions to the reaction-diffusion system

∂u(x, t)

∂t
= D�u(x, t)+f(u(x, t)), (x, t) ∈ � × (0, T ] (11)

u(x, 0) = u0(x), x ∈ � (12)

α(x, t)u(x, t) + ∂u
∂ν

(x, t) = g(x, t), x ∈ ∂�, 0 < t ≤ T . (13)

The diffusion matrix D = diag(d1, . . . , dn) is constant and diagonal and all of its
diagonal elements are positive. The function f(u) : R

n → R
n is C1 and its compo-

nents fk(u) are such that fk(u) ≥ 0 whenever uk = 0 for u ≥ 0. The initial condition
u0(x) is a nonnegative continuous function on a bounded domain �. Let ∂

∂ν
in (13) be

the directional derivative in the direction of the outward pointing unit normal vector
ν. The matrix α(x, t) is diagonal and all of its diagonal elements αi (x, t) are non-
negative. All of the components gi (x, t) of the vector function g are also nonnegative
and bounded on the C2 smooth boundary ∂�. A classical solution u(x, t) exists and
is unique for some T > 0 under some additional smoothness assumptions [2,3], see
Sect. 1.
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In the next theorem we will consider the following problem where we have inequal-
ities in (11) instead of equalities:

∂u(x, t)

∂t
− D�u(x, t) − f(u(x, t)) ≥ 0, (x, t) ∈ � × (0, T ] (14)

u(x, 0) = u0(x) ≥ 0, x ∈ � (15)

α(x, t)u(x, t) + ∂u
∂ν

(x, t) = g(x, t) ≥ 0 x ∈ ∂�, 0 < t ≤ T . (16)

Using inequalities is standard practice in the proof of maximum principle type results
and the problem (11)–(13) is a special case of the problem (14)–(16).

The following theorem shows that nonnegative initial and boundary conditions
imply nonnegative solutions to (11)–(13). It compares to results obtained in [3,9].

Theorem 3 Assume that fk (u) ≥ 0 in (11), whenever uk = 0 and u ≥ 0. Then
the solution u(x, t) of (14)–(16) satisfies u(x, t) ≥ 0 for all (x, t) ∈ �̄ × [0, T ], if
u0(x, 0) ≥ 0 for all x ∈ � and g(x, t) ≥ 0 for all (x, t) ∈ ∂� × (0, T ].

Proof First we show that if there are strict inequalities in (14)–(16) for all x and t then
u(x, t) > 0 in �̄ × [0, T ]. We argue by contradiction. Suppose that there is t0 > 0
such that for some index k, uk(x0, t0) = 0 for some x0 ∈ �̄, where t0 is the smallest
such time. Therefore u(x, t) > 0 for x 	= x0, x ∈ �̄ and t ∈ [0, t0].

Suppose that x0 ∈ �. By fk(u) ≥ 0, if uk = 0 with u ≥ 0 we obtain the following
inequality at the point (x0, t0)

∂uk

∂t
− dk�uk > fk(u(x0, t0)) ≥ 0.

Since (x0, t0) ∈ �× (0, T ] is a point of local minimum for uk(x, t) in �̄×[0, t0] and
dk > 0 we obtain a contradiction. Hence x0 /∈ �.

Clearly for t0 > 0 and x0 ∈ ∂� it follows that at (x0, t0), the inequality
αkuk + ∂uk

∂ν
≤ 0 is satisfied, giving a contradiction.

Therefore we have shown that u(x, t) > 0 for all (x, t) ∈ �̄ × [0, T ], whenever all
inequalities in (14)–(16) are strict.

To show that a solution u(x, t) to (14)–(16) is nonnegative we use a perturbation
argument. First we show that the function

uε(x, t) = u(x, t) + ε̄eσ t H(x)

satisfies (14)–(16) with strict inequalities. The vector ε̄ belongs to R
n and each of its

n components is equal to ε > 0. The constant σ > 0 will be determined later. The
function H(x) = eh(x), where h(x) is a C2(�̄) smooth function, such that ∂h

∂ν
≥ 1 on

∂�. The existence of a function, such as h(x) is shown in Lemma D.7, [10, p. 294].
This kind of perturbation on u(x, t) is used for a more general parabolic system in
[11, p. 131].
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Let uε
k be the k-th entry in the vector uε and we will show that it satisfies

∂uε
k(x, t)

∂t
> dk�uε

k(x, t) + fk(uε), (x, t) ∈ � × (0, T ] (17)

uε
k(x, 0) > 0, x ∈ � (18)

αkuε
k(x, t) + ∂uε

k(x, t)

∂ν
> 0, (x, t) ∈ ∂� × (0, T ]. (19)

The initial condition is strictly positive since

uε
k(x, 0) = uk(x, 0) + εH(x) > 0.

The inequality (19) is satisfied by uε
k , since

αkuε
k + ∂uε

k

∂ν
= αkuk + ∂uk

∂ν
+ εeσ t H(x)

(
αk + ∂h

∂ν

)
> 0.

Since the function f(u) is Lipschitz on a compact set, containing a neighborhood
of the range of the solution u it satisfies the inequality:

| fk(u) − fk(uε)| ≤ ‖f(u) − f(uε)‖ ≤ L‖u − uε‖ = L
√

nεeσ t H(x), (20)

where ‖ ‖ is the Euclidean norm in R
n and L is a positive constant. Using the Lipschitz

condition (20) and the inequality (14) for uk we obtain for uε
k(x, t):

∂uε
k

∂t
= ∂uk

∂t
+ εσeσ t H(x) ≥

dk�uk + fk(u) + εσeσ t H(x) =
dk�uε

k − εeσ t dk�H(x) + fk(u) + εσeσ t H(x) ≥
dk�uε

k − εeσ t dk�H(x) + fk(u
ε) − L

√
nεeσ t H(x) + εσeσ t H(x) =

dk�uε
k + fk(uε) + ε

(
σ − L

√
n − dk

�H(x)

H(x)

)
eσ t H(x) >

dk�uε
k + fk(uε)

The last inequality is satisfied upon choosing

σ > 2 max

⎧
⎨

⎩L
√

n , max
1≤k≤n

dk

max
x∈�̄

|�H(x)|
min
x∈�̄

H(x)

⎫
⎬

⎭ .

We have obtained for uε
k(x, t) and for each k = 1, . . . , n the inequalities (17)–(19).

By the first part uε > 0 for (x, t) ∈ �� × [0, T ] and any ε > 0. Therefore it follows
that for ε → 0 the limit gives u(x, t) ≥ 0 as a solution to (14)–(16). ��
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Remark If Dirichlet boundary condition is used instead (16) will be replaced by
u(x, t) = g(x, t) ≥ 0 for (x, t) ∈ ∂� × (0, T ]. The previous theorem can be proved
by using a simpler perturbation uε(x, t) = u(x, t)+ ε̄eσ t , where ε̄ = (ε, . . . , ε)T and
σ > 0.
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